
The author(s) shown below used Federal funding provided by the U.S.
Department of Justice to prepare the following resource:

Document Title: Recidivism Forecasting Challenge

Author(s): Anuar Assamidanov

Document Number: 305043

Date Received: July 2022

Award Number: NIJ Recidivism Forecasting Challenge
Winning Paper

This resource has not been published by the U.S. Department of
Justice. This resource is being made publicly available through the
Office of Justice Programs’ National Criminal Justice Reference
Service.

Opinions or points of view expressed are those of the author(s) and
do not necessarily reflect the official position or policies of the U.S.
Department of Justice.

Recidivism Forecasting Challenge
Anuar Assamidanov

Problem Statement

The Recidivism Challenge aims to improve the ability to forecast recidivism using person-

and place-based variables with the goal of improving outcomes for those serving a

community supervision sentence. We hope through the Challenge to encourage discussion on

the topics of reentry, bias/fairness, measurement, and algorithm advancement. In addition to

the Challenge data provided, NIJ encourages contestants to consider a wide range of potential

supplemental data sources that are available to community corrections agencies to enhance

risk determinations, including the incorporation of dynamic place-based factors along with

the common static and dynamic risk factors. NIJ is interested in models that accurately

identify risk for all individuals on community supervision. In order to do this, contestants will

need to present risk models that recognize gender specific differences and do not exacerbate

racial bias that may exist.

Under this Challenge, NIJ is providing a large sample accompanied with rich data amendable

for additional data to be paired with it. NIJ expects that new and more nuanced information

will be gained from the Challenge and help address high recidivism among persons under

community supervision. Findings could directly impact the types of factors considered when

evaluating risk of recidivism and highlight the need to support people in specific areas related

to reincarceration. Additionally, the Challenge could provide guidance on gender specific

considerations and strategies to account for racial bias during risk assessment.

The Challenge uses data from the State of Georgia about persons released from prison to

parole supervision for the period January 1, 2013 through December 31, 2015. Contestants

will submit forecasts (percent likelihoods) of whether individuals in the dataset recidivated

within one year, two years, or three years after release.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Project Overview

In this project, I analyzed and predicted the likelihood of recidivism using profile data. To

accomplish that, I performed Logistic regression, Random Forest Classifier, XGBoost,

LightGBM, and Catboost algorithms and evaluated performance. I divided the project into

six main parts. I went through the Exploratory Data Analysis, Feature Engineering, Model

Building, Model Evaluation, Feature Importance, and Inference.

Exploratory Data Analysis

The dataset has 53 columns and 18028 rows. The data includes individual- and place-based

variables that capture the supervision case information, prison case information, prior

Georgia criminal history, prior Georgia community supervision history, Georgia board of

pardons and paroles conditions of supervision, and supervision activities. The columns in the

data are deemed to be a proxy for the already-established profile of respondents. They can be

used to accentuate the salience of person-based and place-based recidivism forecasting.

Our primary outcome variable is recidivism. The table below shows the percentage and

number of recidivated people in the sample of the 18028 population. It occurs the percent

decreases by each year from 29.8 to 19 percent. Overall, within three years, 57.9% are

recidivated.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 Recidivism Year 1 Recidivism Year 2 Recidivism Year 3 Overall

Number of

Recidivated

People/Percentage

5377 (29.8%) 3253 (25.7%) 1791 (19%) 10421 (57.9%)

Male 4920 (31.1%) 2889 (26.5%) 1601 (20%) 9410 (59.5%)

Female 457 (20.6%) 364 (20.7%) 190 (13.6%) 1011 (45.6%)

Black 3198 (31%) 1830 (25.7%) 1048 (19.8%) 6076 (58.9%)

White 2179 (28.2%) 1423 (25.7%) 743 (18.1%) 4345 (56.3%)

Total Number of

Observation

18028 12651 9398 18028

Table 1. Descriptive Statistics of the data

I divide the table into gender and race categories to see how the recidivism varies on those

variables of interest. It occurs that the male population is substantially higher than the female.

Recidivism rate conditioning on gender differs 11-7% each year, meaning that the male

population tends to re-offend more than the female population. Furthermore, the number of

black populations recidivated is higher than the white population. However, the percentage of

recidivism with race category has almost the same value in each year. To sum up, we can see

that recidivism within three years exceeds 40% for each variable in Table 1.

Feature Engineering

In this part, I will explain how I extracted features from raw data, potentially improving the

performance of machine learning algorithms. Overall, in this project, I did not find that

feature engineering produces substantial improvement in the results, meaning that the power

of model learning and extracting insight was better than the human manipulation of the data.

I have done all feature engineering to deal with missing data, converting booleans into

integers, converting categorical variables into a dummy, and converting decimals into

integers.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Initially, I converted the outcome variables into a dummy variable. It will transform our

research question into the likelihood of recidivism based on the given variables. This dummy

transformation gives us a great opportunity to effectively apply classification algorithms like

Logistic Regression, Random Forest, Gradient Boosting, Neural Networks, etc.

Regarding missing values, to my knowledge, lightGBM and CatBoost will ignore missing

values during a split, then allocate them to whichever side reduces the loss the most.

However, for other models, manually dealing with missing values improved model

performance. It seems like if I set missing values to -99, it produces the best results. I did not

see any improvement in imputing missing values to mean, median, or model.

Model

In this part I will briefly explain the machine learning model that I used in this project.

Logistic Regression

Logistic Regression is a transformation of a linear regression using the sigmoid function. The

vertical axis stands for the probability for a given classification and the horizontal axis is the

value of x. It assumes that the distribution of y|x is Bernoulli distribution. (1)

Random Forest

Random forest is a supervised learning algorithm. The "forest" it builds, is an ensemble of

decision trees, usually trained with the “bagging” method. The general idea of the bagging

method is that a combination of learning models increases the overall result. (2)

Xgboost

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient,

flexible and portable. It implements machine learning algorithms under the Gradient

Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT,

GBM) that solve many data science problems in a fast and accurate way. (3)

LightGBM

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It is

designed to be distributed and efficient with the following advantages: Faster training speed

and higher efficiency, Lower memory usage, and Better accuracy, Support of parallel,

distributed, and GPU learning, and Capable of handling large-scale data. (4)

Catboost

CatBoost is an algorithm for gradient boosting on decision trees. It is developed by Yandex

researchers and engineers, and is used for search, recommendation systems, personal

assistant, self-driving cars, weather prediction and many other tasks at Yandex and in other

companies, including CERN, Cloudflare, Careem taxi. It is in open-source and can be used

by anyone. (5)

Model Building

In this section, I will use the prediction of the third year as a case study to explain how I

approached this project. So, the outcome variable is the recidivism of the respondent after

three years post-incarceration. I built several machine learning models and analyzed their

results.

I start with the most basic, a logistic regression, which predicts the likelihood of recidivism.

Logistic regression would serve as our baseline. Following that, I have performed Random

Forest Classifier, Xgboost, LightGBM, and Catboost algorithms. To evaluate training set

performance, I have implemented Stratified K-fold Cross-Validation Method. This technique

is a variation of KFold that returns stratified folds. Since there are many categorical variables

in our data, the folds preserve the percentage of samples for each categorical variable.

To boost the performance of the algorithms, I have implemented a hyperparameter tuning

exercise. I applied the grid search method, which is a process that searches exhaustively

through a manually specified subset of the hyperparameter space of the given algorithm. I

used the "pruning" technique to stop training earlier when the learning curve was much worse

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

than the best-known result. The algorithm selected parameters based on the ROC-AUC

evaluation metrics. I gathered models with optimized hyperparameters into an array. Overall,

I have made 19 models: one Logistic regression, three Random Forest Classifiers, and five

LightGbm, Xgboost, and Catboost.

 I incorporated these models to make one generalized prediction called the stacking method.

Stacking is a way of combining multiple models that introduces the concept of a meta learner

(6). This classifier fits base classifiers, each on random subsets of the original dataset, and

then aggregates their predictions to form a final prediction (either by voting or by averaging).

The point of stacking is to explore a space of different models for the same problem. The idea

is that you can attack a learning problem with varying types of models capable of learning

some part of the problem but not the whole space. So you can build multiple different

learners and use them to make an intermediate prediction, one prediction for each learned

model. Then you add a new model which learns from the intermediate predictions the same

target. This final model is said to be stacked on top of the others, hence the name. Thus, you

might improve your overall performance, and often you end up with a model which is better

than any individual intermediate model (7). The main takeaway from all these steps is to

create a generalized outcome that will not overfit your training set.

I split the original dataset into a Training and Holdout dataset. Let training go onwards into

the upcoming loop and save holdout until the last part in the forthcoming loop. I made a for

loop with KFold Cross-Validation where k=5. In each iteration, I split the Training dataset

into training and validation datasets. I called them X_train, y_train, X_valid, and y_valid.

The red parts in Figure 1 represent X_train and y_train, while the green represents X_valid

and y_valid. I trained the current model on X_train and y_train.

I made predictions on the test dataset X_valid and evaluate it with the y_valid. I extended an

array of the predictions for the whole training dataset. I called them out of sample

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

predictions. I run these out of sample predictions for all algorithms stated above. Eventually,

I got 19 out of the sample predicted arrays. I used them as new features for the new training

dataset composed of 19 features and outcome variables. Then, I run Ridge Regression to

predicted based on these input variables. I also did the Kfold cross-validation technique the

same as above, but I run a fitted model on the Holdout dataset. I have chosen five folds and

created five predicted outcome variables from the holdout dataset. After that, I took a mean

of these five predicted outcome variables, my final predicted recidivism probability.

Figure 1. The illustration of K-Fold Cross Validation and Stacking method

Model Evaluation

To achieve a decent score and find out the best hyperparameters, I run an overall 16015 trials

using the cutting-edge Python Library of Optuna. Then, I have chosen the best one from

Logistic Regression, three from Random Forest, and five from LightGBM, CatBoost, and

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

XGboost. The decision from the chosen numbers comes from personal experience working

with these algorithms.

In this part, I would like to explain the results of each model and what score I got. From

Table 2, we can see that the best performance comes from CatBoost. From my observation, I

noticed that fairness and accuracy results are highly correlated with the AUC score.

Therefore, we can rely on the AUC score, which comes with each algorithm in Python

Library.

 Model I Model II Model

III

Model IV Model V Trials

Logistic Regression 0.668 15

Random Forest 0.681 0.6801 0.6804 100

LightGBM 0.681922 0.681967 0.682350 0.682453 0.682980 500

CatBoost 0.708976 0.708665 0.703801 0.701938 0.703322 500

XGBoost 0.6889 0.6881 0.6879 0.6875 0.6871 500

Table 2. AUC result of the algorithms

As I previously mentioned, I choose all of these algorithms out of sample results to run the

Stacking method. From this method, we can see that overall it is lower than the best

performing Catboost method. Assuming stacking will take the best part of each algorithm and

performs generalized result, I have chosen to stack as my outcome.

 Fold I Fold II Fold III Fold IV Fold V Overall Metrics

Stacking 0.6843 0.6956 0.7004 0.7126 0.70731 0.6996

Table 3. AUC score of Stacking Method

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Inference

 Feature I Feature II Feature III Feature IV Feature V

Logistic

Regression

Age at Release

18-22

Age at

Release 48 or

older

Gang Affiliated Age at Release 43-47 Age at Release

23-27

Random

Forest

Jobs Per Year Percent Days

Employed

Avg Days per Drug

Test

Prior Arrest Episodes PP

Violation Charges

Supervision Risk

Score First

LightGBM Avg Days per

Drug Test

Jobs Per

Year

Percent Days

Employed

Supervision Risk Score

First

Residence

PUMA

CatBoost Jobs Per Year Avg Days

per Drug

Test

Percent Days

Employed

Age at Release Supervision Risk

Score First

XGBoost Prior Arrest pp

violation

Charges

Gang

Affiliated

Prior Conviction

Episodes Misd

Violation Instruction Prior Arrest

Episodes Misd

Table 4. AUC result of the algorithms

In this part, I would like to go over the feature importance analysis. According to the table,

we can see that each model has its own top five most important features. Feature importance

is determined by a mean decrease in impurity for decision tree-based models and logs odd

coefficients for Logistic Regression. As we can see, the LightGBM and CatBoost have more

similarities in features, but the order is not the same. Since the core base of these models is

gradient boosting techniques, thus AUC scores are also close.

Furthermore, Logistic Regression has completely different features, which is reasonable since

it has low predictability than the gradient boosting techniques. As can be seen from Table 4,

job-related variables like the number of jobs per year and percent days employed have the

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

highest correlation. The idea comes together with Kevin Schnepel (2018) where he examines

“good jobs” and asks how their presence influences recidivism. Prior criminal history records

such as prior misdemeanor and violation charges have shown high importance in the

XGboost model. Average Days on Parole Between Drug Tests tend to be helpful to achieve

good predictability in Catboost and LightGBM. Overall, the main take from these models is

these features are highly correlated with the outcome variable of recidivism.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Reference

1. Sigmoid Function - an overview | ScienceDirect Topics.

https://www.sciencedirect.com/topics/computer-science/sigmoid-function

2. Random Forest Algorithms: A Complete Guide | Built In.

https://builtin.com/data-science/random-forest-algorithm

3. XGBoost Documentation — xgboost 1.5.0-dev documentation.

https://xgboost.readthedocs.io/

4. Welcome to LightGBM’s documentation! — LightGBM 3.2.1.99

https://lightgbm.readthedocs.io/en/latest/index.html

5. CatBoost - open-source gradient boosting library. http://catboost.ai/

6. Ensemble Methods. Essential Machine Learning Concepts to Know.

https://medium.com/analytics-vidhya/ensemble-methods-b644f9c94bc1

7. Stacking in Machine Learning - GeeksforGeeks.

https://www.geeksforgeeks.org/stacking-in-machine-learning/

8. Good Jobs and Recidivism - Kevin Schnepel.

https://kschnepel.github.io/research/2018-GoodJobsRecidivism-paper-6

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

https://www.sciencedirect.com/topics/computer-science/sigmoid-function
https://builtin.com/data-science/random-forest-algorithm
https://xgboost.readthedocs.io/
https://lightgbm.readthedocs.io/en/latest/index.html
http://catboost.ai/
https://medium.com/analytics-vidhya/ensemble-methods-b644f9c94bc1
https://www.geeksforgeeks.org/stacking-in-machine-learning/

